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ABSTRACT
We investigate the issue of sign language automatic ptosah-
unit modeling, that is completely data driven and without prior
phonetic information. A first step of visual processing eéalsim-
ple and effective region-based visual features. Prior ¢ostib-unit
modeling we propose to employ a pronunciation clusteriag stith
respect to each sign. Afterwards, for each sign and proationi

The field of sign language recognition is certainly in theu®c
of quite intense research lately [1]. It is considered to baud
tilevel problem and it poses significant challenges regaydiata
collection, visual processing and information stream ntingefor
recognition. Vogler and Metaxas [3] broke down signs inrthon-
stituent sub-units using the basic ideas of the Movemerid-hhodel
[4] and applied successfully the so-called Parallel HMMau& and

group we find the time segmentation at the hidden Markov modekKraiss [5], on the other hand worked also at the sub-unit keyglor-
(HMM) level. The models employed refer to movements as a seing a data-driven approach for modeling the intra-signsunithey

guence of dominant hand positions. The constructed segnagat
exploited explicitly at the model level via hierarchicaustering
of HMMs and lead to the data-driven movement sub-unit coustr
tion. The constructed movement sub-units are evaluatedaltitg-
tive analysis experiments on data from the Boston Univwe(8U)-
400 American Sign Language corpus showing promising result

Index Terms— sign language, subunit modeling, HMM

1. INTRODUCTION

Sign languages, i.e., languages that essentially confeymation
via visual patterns, commonly serve as an alternative optemen-

cluster independent frames utilizing K-means. They predusub-
units named as phenones and further employed a 2-state HWIM fo
their modeling. Fang et al. [6] and Han et al. [7] have alsgppsed
approaches for data-driven sub-unit modeling. They engal@us-
tering by considering segments and not only independentesaas
[5] at the feature level taking advantage of the dynamicsdtaes-
sential in sign language. Modeling at the sub-unit leveljghes a
powerful method in order to increase the vocabulary sizedsal
with more realistic data conditions.

Based only on simple position measurements, we proceedon th
sub-unit modeling of sign language at the model level, tafdrs to
the modeling of intra-sign segments. Given the lack of aamnr
information within the sign units we assemble our approagiath

tary mode of human communication. Visual patterns, as @bos tempting at first an initial segmentation step. We employefach
to the audio ones used in the oral languages, are formed iy hajgn a model based segmentation at the state level, sitoils.
shapes and manual or general body motion, lip movementsaand fyet, this may be proved poor due to factors that introducéatian

cial expressions. Their expressiveness facilitates huntaraction
and exchange of information not only in the existence of ingar
impaired people but also in situations where speech is ichped,

e.g., in loud workspaces. However, efficient communicabipthese
means is only feasible between specially trained intergqgiarties.
In this context, automatic sign-to-text and text-to-sigmslation can
be viewed as the intermediate technological modules thaipes

tially lift this restriction.

First attempts on automatic Sign Language recognition were
stricted to simple recognition tasks [1] similarly to caséspeech
recognition a few decades ago. An informal correspondeftieco
word in spoken language is a sign unit, given that sign laggua
tend to be monosyllabic [2]. There are several metaphomgdast
sign and speech recognition that allow for the exchange dhme
ods between the two areas. However, there exist pointsfefelifce
too [2]. A diversity that has also practical effects consgshonolog-
ical sub-units. There is not yet a well-defined unit equintite the
phoneme in speech. In this paper, we focus on automaticdiisen
modeling of sub-units without any phonetic information. iSre-
search direction is important both in order to face the ptiomeod-
eling of intra-sign sub-units and for the practical caseuwbmatic
recognition.

This research work was supported by the EU under the respesgham
Dictasign with grant FP7-ICT-3-231135.
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in the realization of signs. To cope with this pronunciati@mniation
per sign we propose to precede the segmentation step byrmienu
ation clustering. Given the segmented signh we are equippdawv
prosperous initialization step to face the intra-sign sexgtsi mod-
eling. Our goal is to cluster not the independent frames #zeif
were in a common pool [5], neither the feature frames seqmseas
segments themselves at the feature level [6, 7]. Insteagromose
to hierarchically cluster whole dynamic models (HMMs) [&ded
on a similarity measure among models. We evaluate the pedpos
methods by qualitative experiments analyzing the mappingrey
the created models and the real movement data, showing girgni
results. In all experiments we employ real data from the @&wvst
University continuous American sign language corpus (B)49].

2. DATA AND FEATURE EXTRACTION

2.1. Continuous Sign Language Corpus: BU400

The BU400 [9] is a continuous American Sign Language (ASL)
database and consists of 843 utterances over a vocabul&@6of
words and four different signers. The background is unifofithe
camera setup consists of three cameras, among which we hesed t
one facing front. The transcriptions are in the sign levehsisting

of English signs, with annotated start and end points.
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Fig. 1. Video frames (left to right, upper to bottom row): Progress
frames that correspond to the realization of the sign “HB®ttom
row: Movements as sequences of positions in x,y-coordsnabe-
malized to the initial position of the sign; the same redi@afor
the sign “HIT” as shown in the video frames. 1) Continuougs$in

show the 1st segments, 2) dashed lines correspond to theeBnd s

HIT
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Fig. 2. Multiple realizations of the same sign “HIT”, containintugt
realization shown in Fig. 1. We show movements as sequerfces o
positions in x,y-coordinates normalized to the initial jtios of the
sign. 1) Continuous lines show the 1st segments, 2) dashed li
correspond to the 2nd segments as they have been produchkd by t
segmentation step. The marker and color in the lines cavrekspto

the sub-unit cluster of each segment.
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Fig. 3. HMM topology as employed for segmentation.

ments as they have been produced by the segmentation step. T#r1- Sign Pronunciation Clustering

marker (and color) in the lines corresponds to the sub-Uogter
that each segment belongs.

2.2. Feature extraction on the BU400 Database

For the hand and head detection we employ a probabilisticcsitor
model that uses as initialization manually annotated siior@reas.
In this way we estimate the probability of each pixel beloggto
skin. This probabilistic map is then used as a force in thedésic
Active Contour model [10, 11] enforcing the curve to conesegen-
tually to the edges that separate the skin region from thiegoaand.

To account in a simplified way for the variation of the differeeal-
izations of the same Sign we construct clusters with respesach
Pronunciation of the sign (SP); this step is repeated fosiglths.
The rationale for Gloss Pronunciation (GP) clustering é the pro-
duced clusters are more compact, affecting on their tursegenen-
tation step. In order to cluster the different examples veeusming
an hierarchical clustering algorithm. Distances amongseces are
computed by employing dynamic time warping to account far se
ments of different lengths combined with the norm. After exper-
imental observations, we practically employ 3-5 clustensgioss.

Next, we face the cases of occlusions during tracking that .
emerge when one hand is in front of the other or the head. Wé-2- Segmentation

disambiguate occlusions by a linear forward-backward iptiech
of the centroid of each hand and looking on following or poes
frames. This is combined with a template matching scheme.

Finally, we extract features related to the position, theentent
and the shape of the hands. In the presentation that follawsnly
take advantage of movement features. Via such simple featue
aim on understanding their effect on sub-unit modeling. iB=s
movement and position are among the main characteristtcglt:
scribe a sign [2, 1].

3. SUB-UNIT MODELING AT THE MODEL LEVEL

Using the partitioning of the GP clustering we train one HMd/ f
each sign pronunciation. For training we consider all défe re-
alizations of each GP cluster. The HMM topology employed is a
5-state left-right HMM (Fig. 3) allowing entrance and exiarnsi-
tions from its first and third state. After training each GP MMve
perform a Viterbi alignment resulting to the most probalggraen-
tation point at the state level. The duration in the modeWken
the first and the third state and between the third and thediéte
corresponds to the first and the second segment respeciivehis
way we constrain the decomposition of signs in one or twousits.
This fits with sign language aspects that sign consist of glesior
two movements [2].

Data Selection:In the experiments described next we use only the

front camera video stream. Among the whole corpus, we oestir
processing on six videos that contain stories narrated &aimgle
signer; these are identified namely ascci dent , bi ker _buddy,
boston_ a,footbal | ,l apd_st ory andsi bl i ngs. We uti-
lize 20 signs among the most frequent, sampled from allesori
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3.3. HMM based sub-units by HMM clustering

Attacking the issue of intra-sign sub-unit modeling at thisIM
model level provides advantages compared to the signal épve
proach: for instance, we take advantage of the explicit tdhjoaod-
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Fig. 4. Segments of position sequences normalized to the inibisitipn of the segment. Each figure contains segments thagspmnd to a

single sub-unit model after HMM clustering.

Fig. 5. Video frames (left to right), upper row:

eling that the HMMs yield. This dynamic modeling is requasior
the modeling of movement, and has been employed successfull
numerous applications [3]. Afterwards, a model level apphogives
a probabilistic viewpoint and fits well with the automaticognition
framework. We initialize the segments by first applying thermun-
ciation clustering and segmentation procedures, as tescim the
previous Sections 3.1,3.2. Since our goal is to model theyn
ics of movement during the signs we employ instead of thetiposi
feature vector the position normalized by the initial piasitof the
segment. In this way we explicitly force our models to be $tation
invariant. This additional characteristic, requires tpplecation of
one more normalization step, similarly, on the rest of thgmeents
apart from all the first that have not been normalized, byraghing
their own initial position. Given the normalized to the ialtposition
segments our goal is to cluster whole dynamic models (HMME) [
Clustering states at the model level has been employed ssfotig
in ASR applications [12]. Herein we cluster not just the etabut
whole sequences of states.

Next, we do not use explicitely the GP clustering; its agilimn
is restricted to the segmentation step. Thus, wd& fR-state HMMs,
one for each individual sequené&s, : = 1... N. Then we use a
similarity measure between pairs of HMM moddls,, k = 1,2,
by adopting among proposed approaches [13] that are bastk on
Kullback-Leibler divergence. Similarly we employ
PO |H1,5{)

PO H,,5112)

1

T;

D(Hy,Hy) =

ol

WhereOZH * corresponds to the observation sequences that have b
generated from eacHj, of lengthT; andlog P(O."*|Hy, S/'*) to
the log probability of the observation given the HMM modetlidhe
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sign “WITH?”; bottorow: gloss “FOOTBALL".

optimum state sequentﬁf’“, for k = 1,2. The distance similarity
matrix among all models is exploited via an agglomerativerdr
chical clustering algorithm. We end up with the total likelod of
the specific clustering, given the number of clusters engaoyp to
now the number of clusters was assumed to be known. In orderto
lect the number of centers we follow a Monte-Carlo crossdedion
approach [8]: We partition the data into a fraction0ds for testing
and training and repedt times the steps for clustering using only
the training data for a range of numbers of centers. T partitions
are randomly chosen on each run. We evaluate each reatizatio
the total log-likelihood of the models. Based on these gyeraea-
surements we select the number of 15 clusters over diffesignt
selections.

The existing automatic sub-unit modeling approaches épio
data-driven characteristic at the feature level [5, 6,7]6] they em-
ploy segments that result from a segmentation step, instithe in-
dividual frames. Next, they apply a hierarchical clustgrtgorithm
by utilizing dynamic time wrapping. The employing of dynami
information in [6, 7] seems more appropriate for featuresctnat
evolve dynamically compared to a static clustering [5] #@s upon
features in isolated time instances. In contrast to thepeoaphes
we propose the incorporation of the dynamics at the model.lev

4. EVALUATION AND DISCUSSION

After the HMM hierarchical clustering we get clusters of ratsd By

mapping back to the initial segments of features we show gn4-i

a few indicative clusters which contain the sequences otipns
€€8., movements. We observe that the grouping of segmermgsob

loosely formed patterns. However there are clusters thataoonly

a few segments or outliers. For instance different modedsns®
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Fig. 6. Multiple realizations of three different signs, “FOOTBEL
(G1), “WITH” (G2), “HIT” (G3). Their segments share at leaste
sub-unit model. Line type identifies the sign. Markers anlbrco
indicate sub-units; see Fig. 5 for video frames.

map to a different type of movement pattern with respect ¢tofs
such as direction, scaling, and tracking: first figure shotraight
movements from left to right and downwards, while 3rd figureves
curved movements pointing upwards and left.

In Fig. 2 we can see different realizations of the sign “HIThe
sub-unit sequences of the figure shows pairs of segmentquesee
that combined create the whole signs. All instances shaart,gith
the 1st segment movement being from left to right; the 2ndneen
movement evolves upwards to downwards. We observe thatie fi
segments (continuous lines in the figure) for all realizaiexcept
from one which is clustered separately, are clustered indhge sub-
unit; sub-units are identified by the marker type (and col®his is
the case also for the second segment (dashed line) whehe akg-
ments are mapped into the same sub-unit cluster. A singlerics
among all instances in Fig. 2 is shown in Fig. 1. The movematit p
tern of the specific sign is also observed in the sequenceanfes
shown in the top row of the figure.

A complementary result is illustrated in Fig. 6 that is acpam
nied too by corresponding video frames for two instancesgofssin

Fig. 5. As it is shown, the signs are segmented and mappedeon th

sub-unit sequences as follows: the first instance of “FOOIBA
(G1) is mapped on SU8, next, “WITH” (G2) is mapped on SU6+SU4

or SU8+SU4 and “HIT” (G3) on SU8+SU9. We see the advantage

of sub-unit construction at the model level: different izations of
the same sign or of a completely different sign may shareusiitis;
i.e., they do not share just states of their HMMs but whole H&MM
which contain sequences of states.

5. CONCLUSIONS

We investigate the issue of data-driven phonetic modelirigtoa-
gloss sub-units. We perform a pronunciation clustering stethe
gloss level, followed by a model based segmentation thahekfi
segments of movements. We cluster these segments by entployi
a clustering at the HMM level that is based on each model log
likelihood. We finally construct the model based sub-unis.eval-
uate qualitatively this modeling on real continuous signglzage
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video from the BU400 corpus. The results highlight the begefi
of the proposed approach. Moreover, in our ongoing reseasch
deal with the recognition problem and the subunit approaehly
promising results. Although we have applied the proposaché-
work by using movement only features, there is on-going work
1) extending this approach by incorporating hand-shapeo#mer
informative cues of sign language and 2) taking advantagief
probabilistic character of the modeling in favor of othealdnging
issues in sign language modeling. Finally, it would be frlito em-
ploy phonetic information aiming at the deeper understamdf the
mechanisms and phenomena involved.
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